b-jet tagging w/ secondary vertex Sanghoon Lim ## Reminder (purity vs. efficiency) - 3M events (Pythia8 MB) - HardQCD::all, PhaseSpace:pTHatMin = 10.0 - MAPS+IT+TPC configuration distance between 2nd vtx and prim. vtx < 1 cm Higher track p_T cut for 2nd vertex help to enhance b-jet purity - Instead of applying a hard p_T cut on track, ratio between vertex p_T and jet p_T can be used to reject vertices from low mass particles - reject events of small vtx p_T /jet p_T (test w/ 0.15) ## deviation from prim. vertex > 2 sigma ## Vertex p_T / Jet p_T - Instead of applying a hard p_T cut on track, ratio between vertex p_T and jet p_T can be used to reject vertices from low mass particles - reject events of small vtx p_T/jet p_T (test w/ 0.15) - similar performance (magenta curve) with p_T>1.0 GeV/c cut ## 2nd vertex mass - Instead of applying a hard p_T cut on track, ratio between vertex p_T and jet p_T can be used to reject vertices from low mass particles - reject events of small vtx $p_T/jet p_T$ (test w/ 0.15) - similar performance (magenta curve) with p_T>1.0 GeV/c cut - 2nd vertex mass distribution (deviation>3.5 sigma) - although purity is ~0.27, shapes are clearly different between flavors